

lamar.ethz.ch

ECCV 2022 Tutorial on Localization and Mapping for AR

Tentative Schedule

- 1. Introduction and Motivations [1h]
- 2. Dataset and Ground-Truthing [1h]

Coffee break [15 mins]

Benchmarking Localization and Mapping [45 mins]
 Practical guide and Conclusions [45 mins]

lamar.ethz.ch

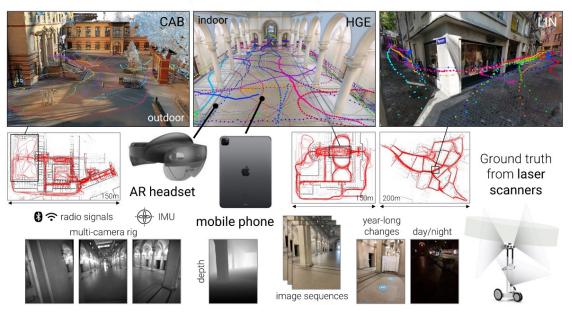
Home Dataset Leaderboard ECCV 2022 Tutorial

LaMAR: Benchmarking Localization and Mapping for AR

Paul-Edouard Sarlin^{*1}, Mihai Dusmanu^{*1} Johannes L. Schönberger², Pablo Speciale², Lukas Gruber², Viktor Larsson², Ondrej Miksik², Marc Pollefeys^{1,2}

ETH Zurich¹, Microsoft²

European Conference on Computer Vision 2022



Come chat with us!

Poster 3.B Hall B Session 18 Poster 7 Thursday, 15:30-17:30

Organizers

Paul-Edouard Sarlin

ETH Zurich

Mihai Dusmanu ETH Zurich

Johannes L. Schönberger

Microsoft

Viktor Larsson

Lund University

Ondrej Miksik

Microsoft

Marc Pollefeys Microsoft & ETH Zurich

lamar.ethz.ch

LaMAR tutorial 1. Introduction & Motivations

Marc Pollefeys

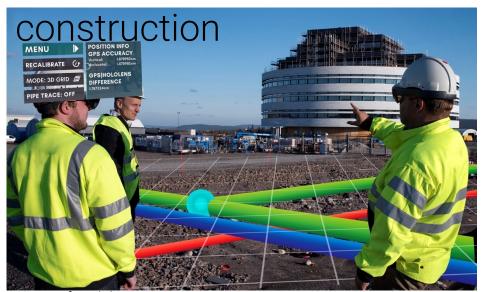
Outline

a) Visual Localization and Mappingb) Augmented Reality systemsc) Benchmarking & existing datasets

a) Visual Localization & Mapping

Applications

- Devices need to know
 where they are located in space
- Different accuracy requirements

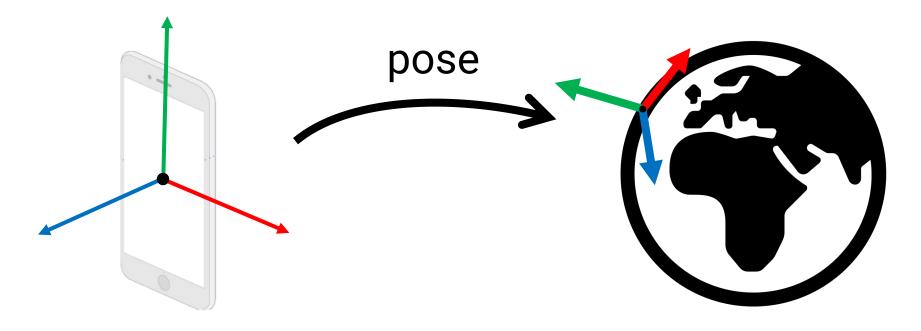


8

Positioning

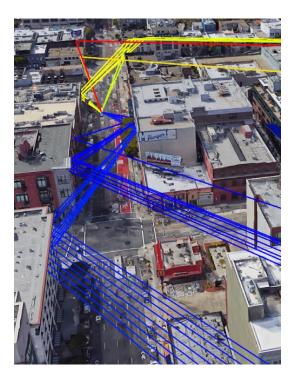
Recover the pose of the device

- 2D/3D translation? Rotation?
- w.r.t. a known reference frame

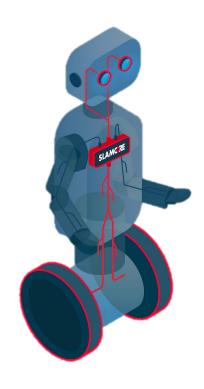


Positioning solutions

<u>GPS</u> globally absolute inaccurate



<u>Wheel odometry</u> for robots prone to drift



<u>Vision</u> accurate cameras are cheap

reference frame = posed mapping images

Challenges of long-term localization

Mapping and localization at different times \rightarrow the world changes

structure

appearance

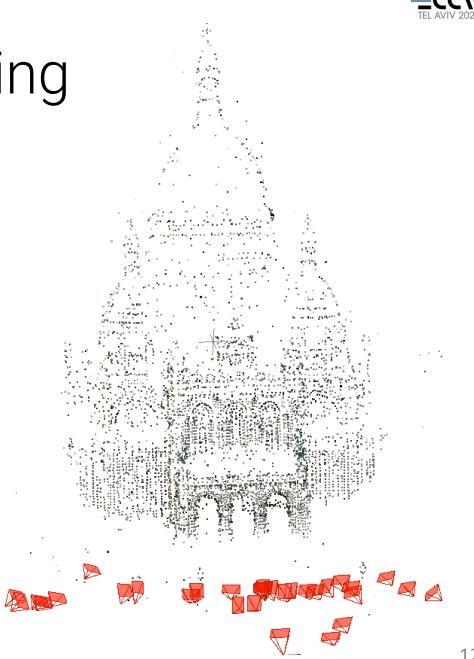
Visual mapping

A map: a representation of **appearance/geometry** of the scene

 mapping images with poses + calibration

and/or

• a sparse **3D point cloud** with descriptors



Structure-from-Motion

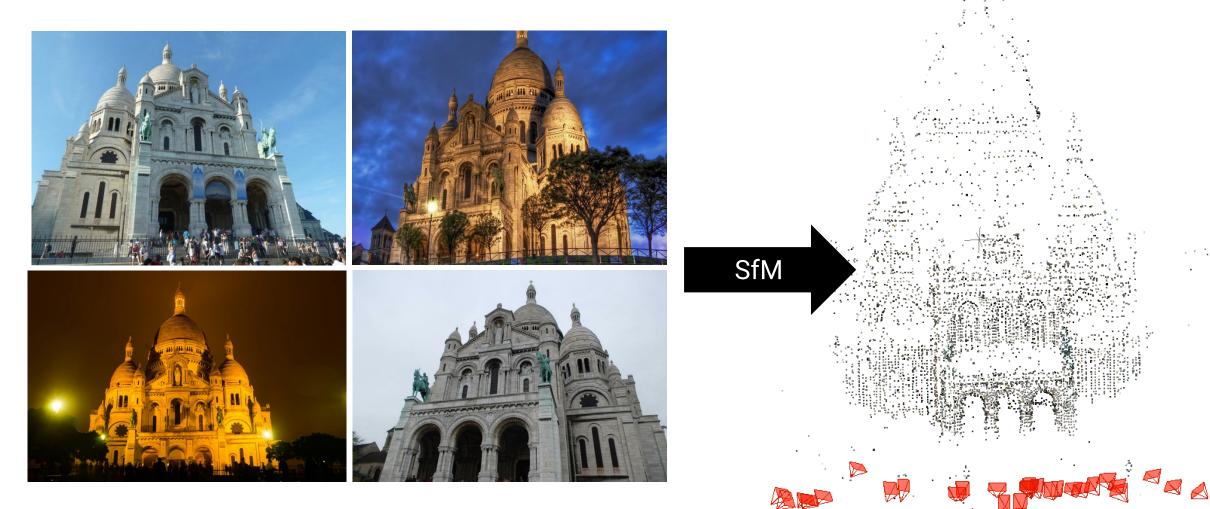
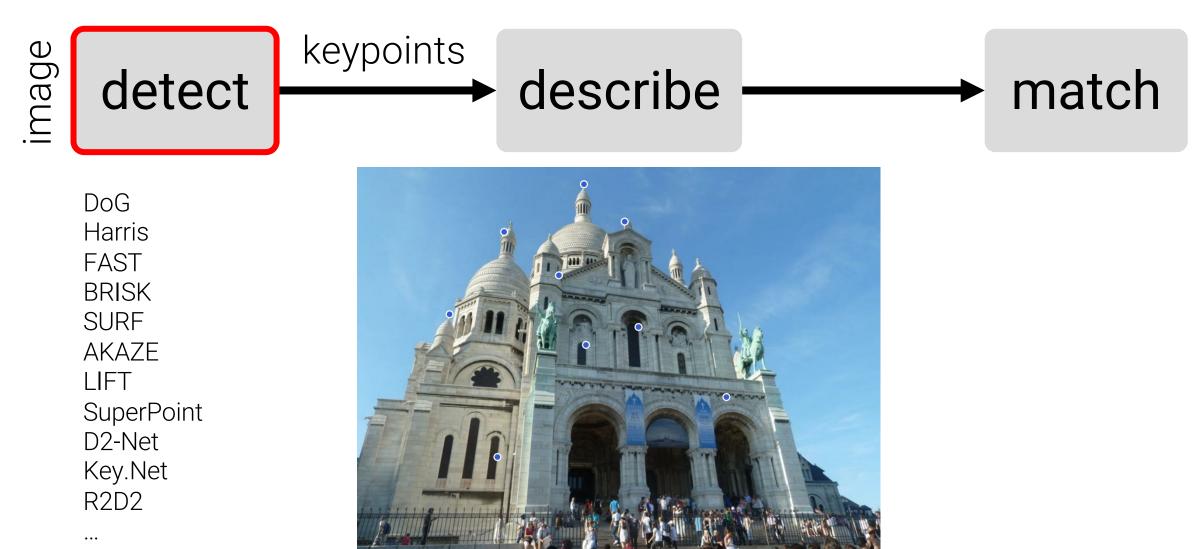
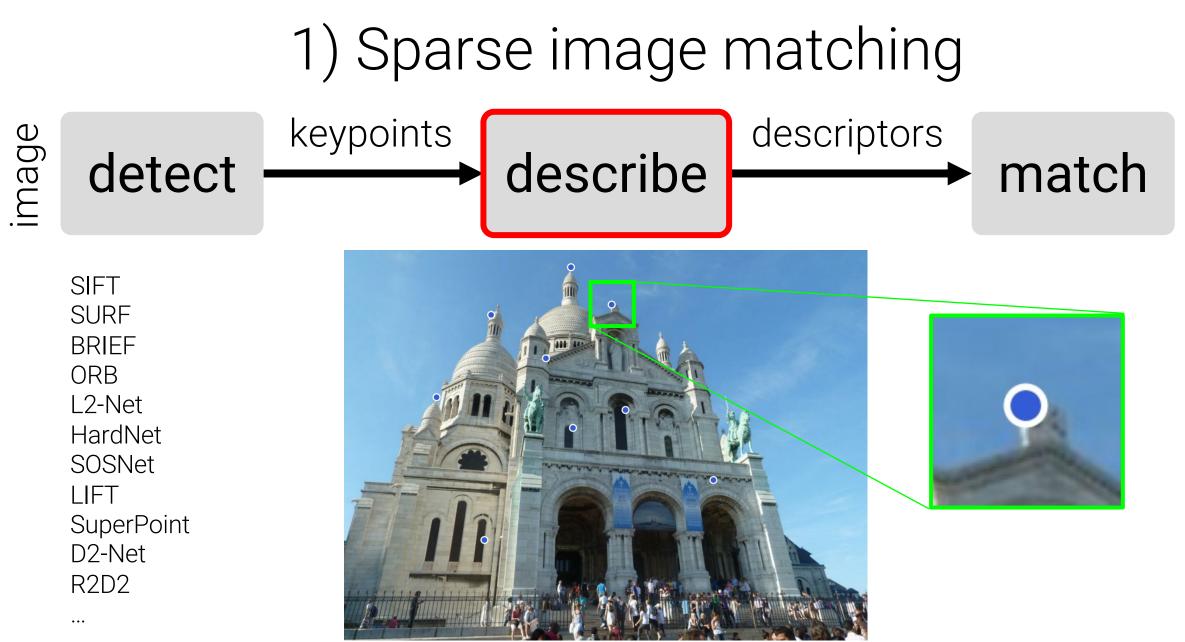
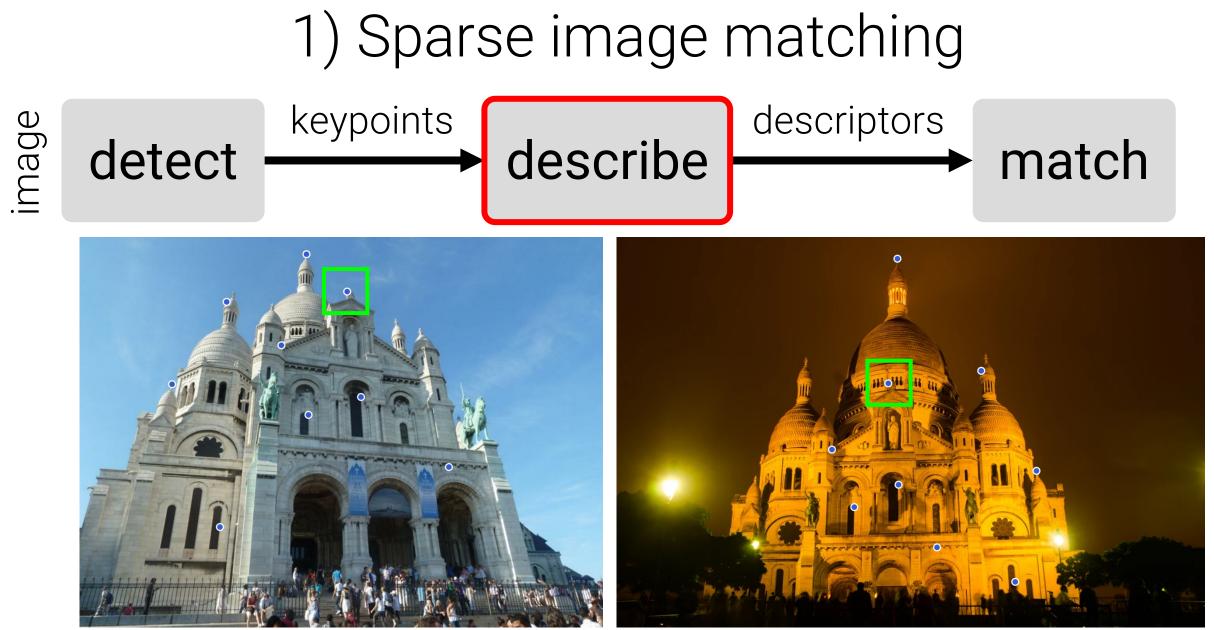


image matching + geometric optimization

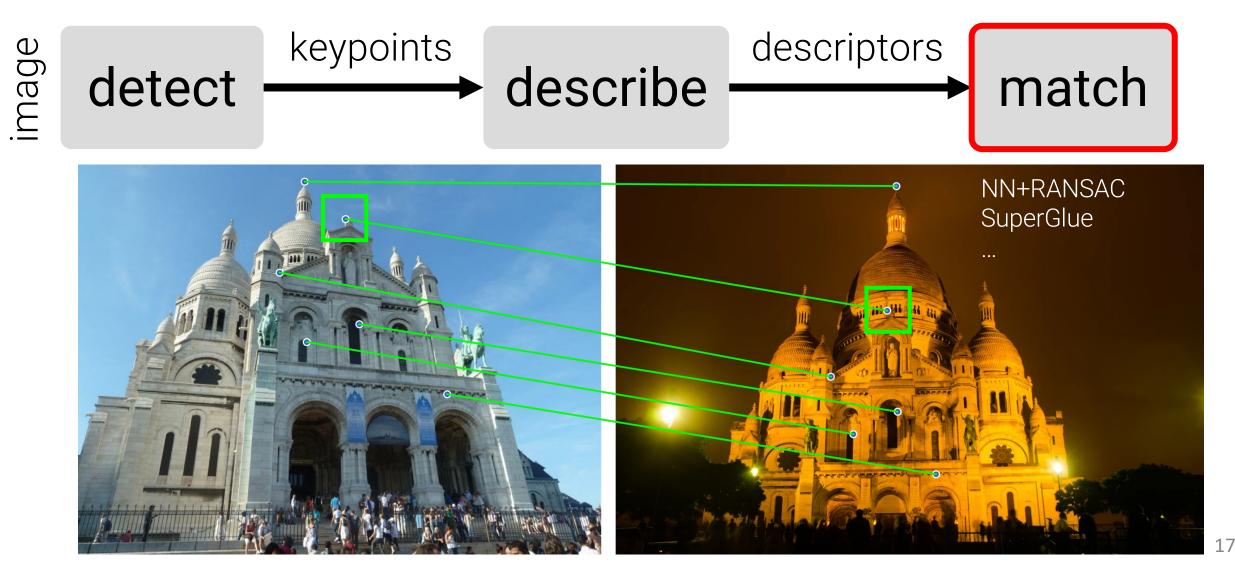
1) Sparse image matching



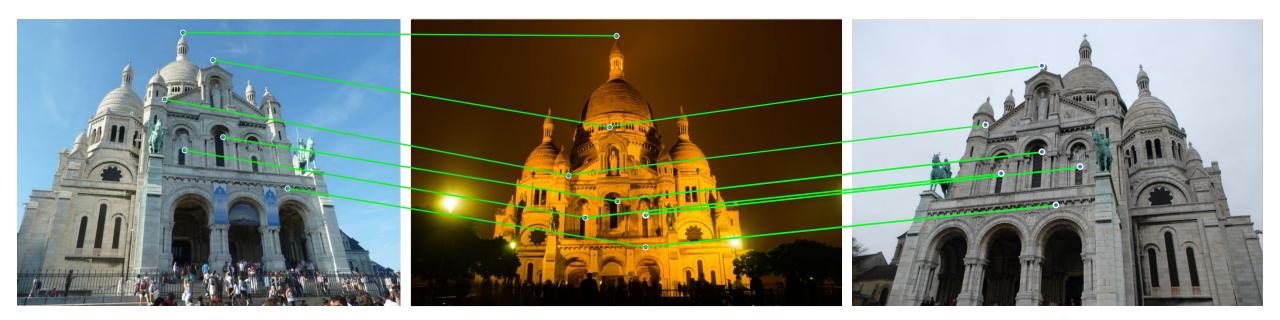




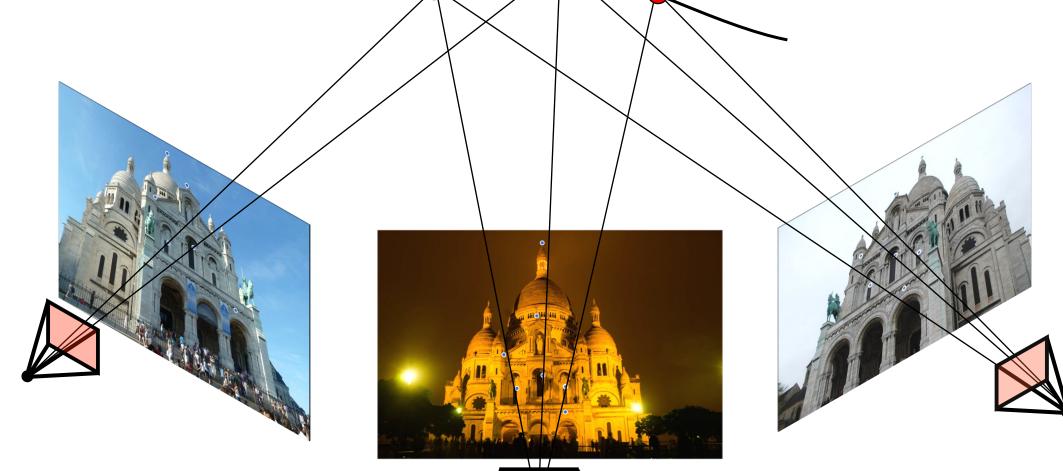
1) Sparse image matching

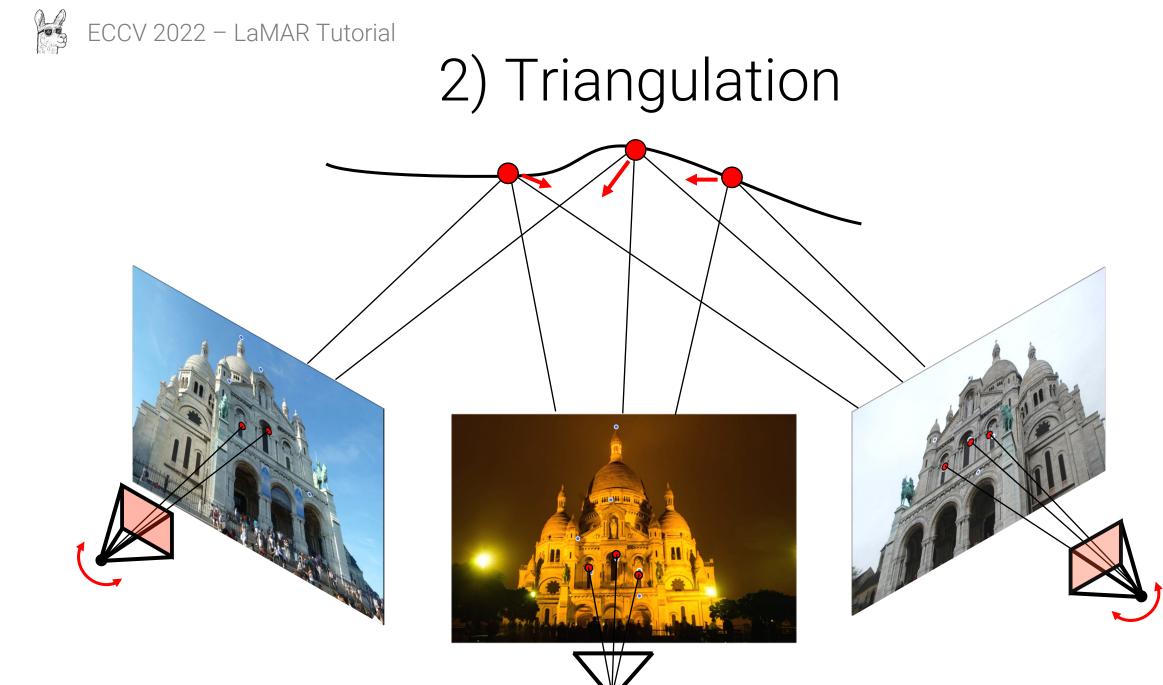


2) Triangulation



2) Triangulation





Mapping algorithms

Similar principles but different names

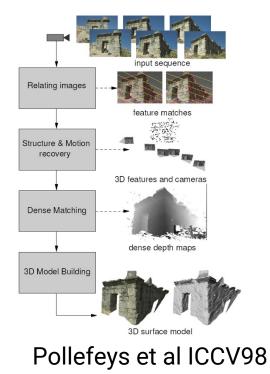
Structure-from-Motion

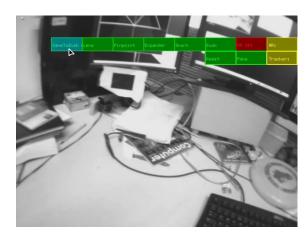
- once all images are captured
- offline
- typically for arbitrary internet image collections
- typically uses matching

<u>SLAM</u>

- online estimation from videos
- minimal latency
- assumes continuous motion, typically leverages IMU
- typically uses tracking (except for loop closure)

Mapping - history





Klein and Murray ISMAR07

- extensive research over 20+ years
- good open-source tools: COLMAP, ORB-SLAM, etc.

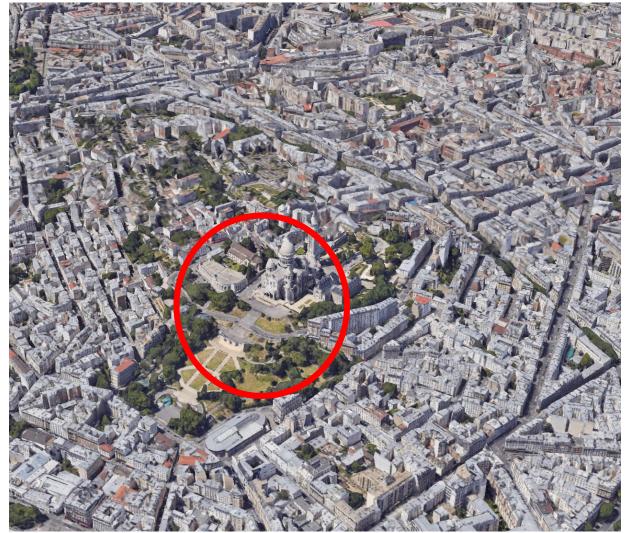


Localization

Given a new image, find its position w.r.t. the map

Google Earth

Localization

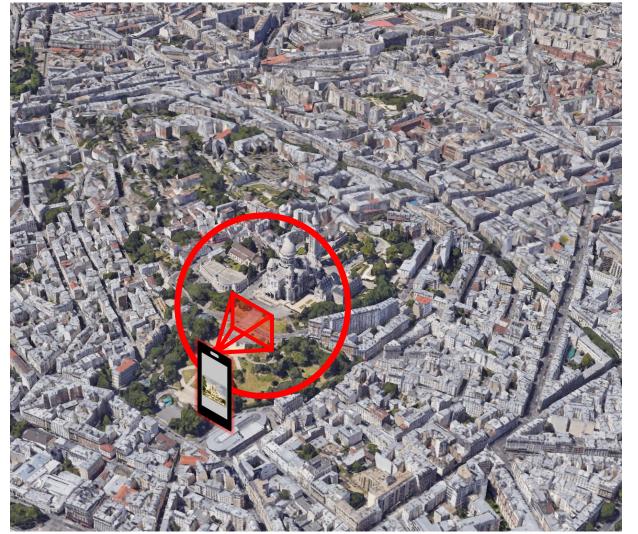


Given a new image, find its position w.r.t. the map

• Place recognition: image similarity

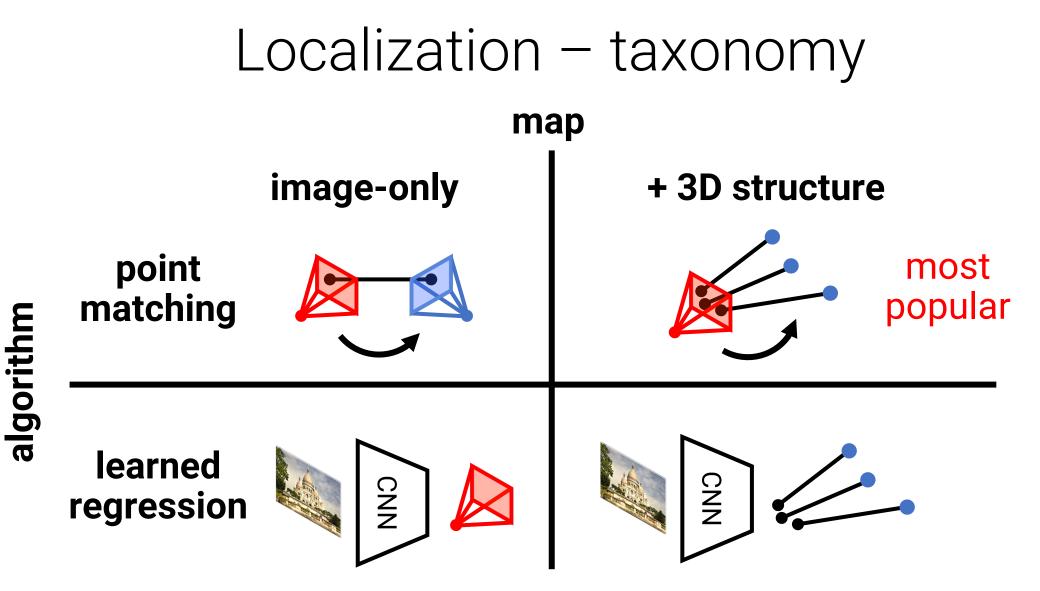


Localization



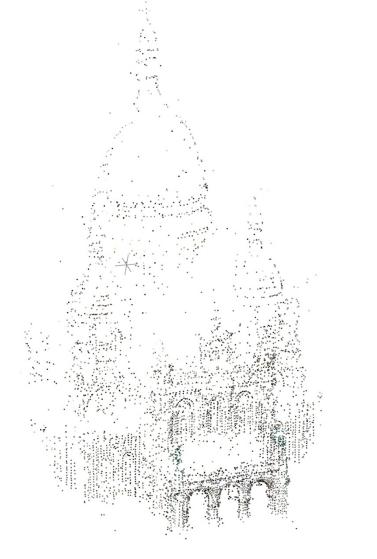
Given a new image, find its position w.r.t. the map

- Place recognition: image similarity
- 6-DoF localization: R+t



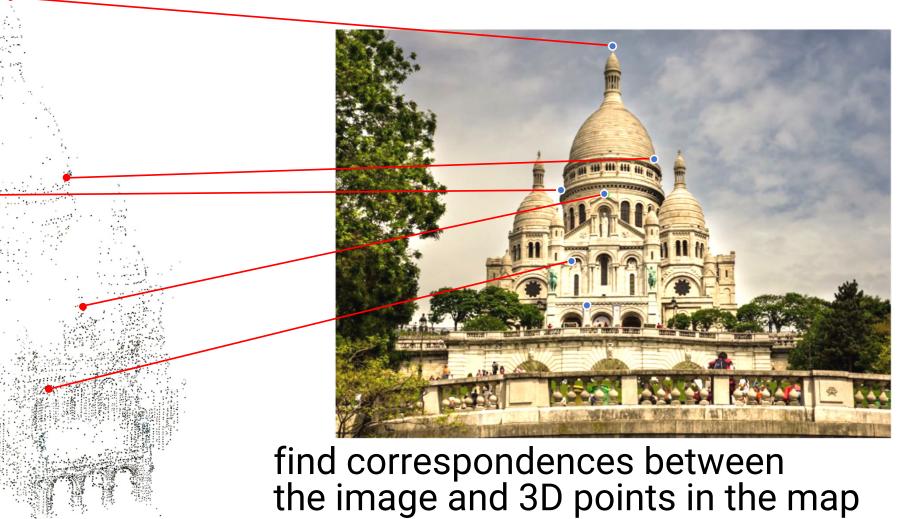
see ICCV 2021Tutorial "Long-term visual localization"

Localization – structure-based

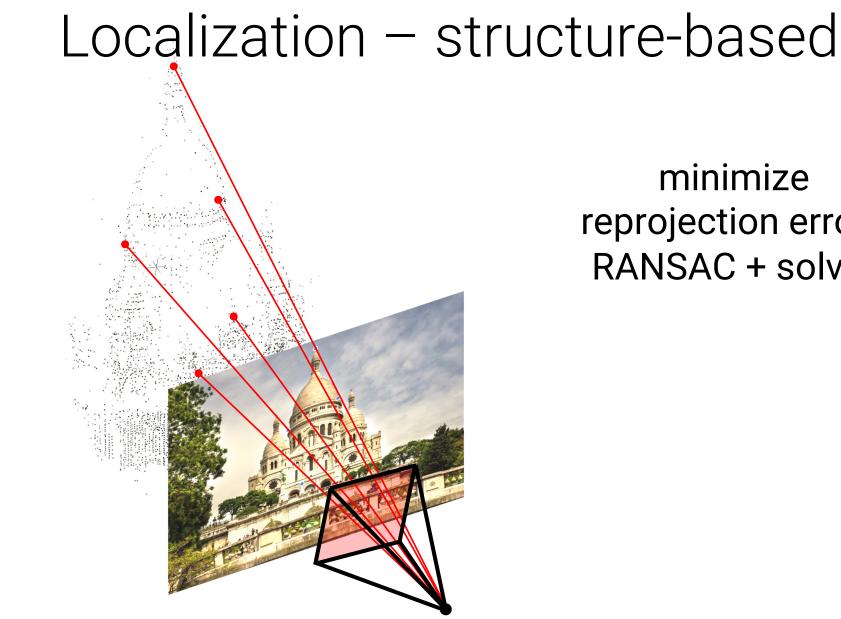


find correspondences between the image and 3D points in the map

CV 2022 – LaMAR Tutorial



ECCV 2022 – LaMAR Tutorial



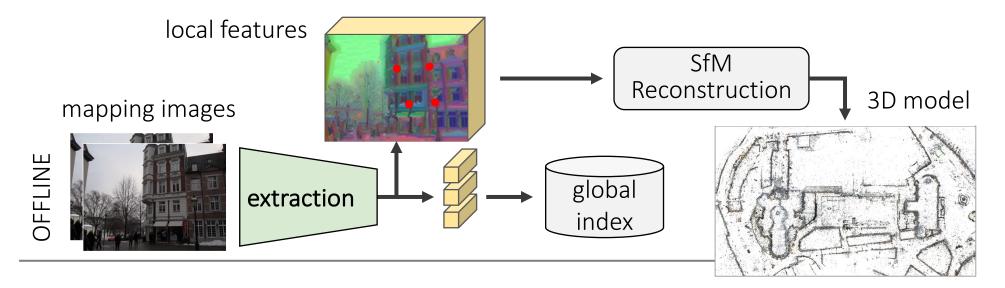
minimize reprojection errors RANSAC + solver

Localization – structure-based minimize reprojection errors RANSAC + solver

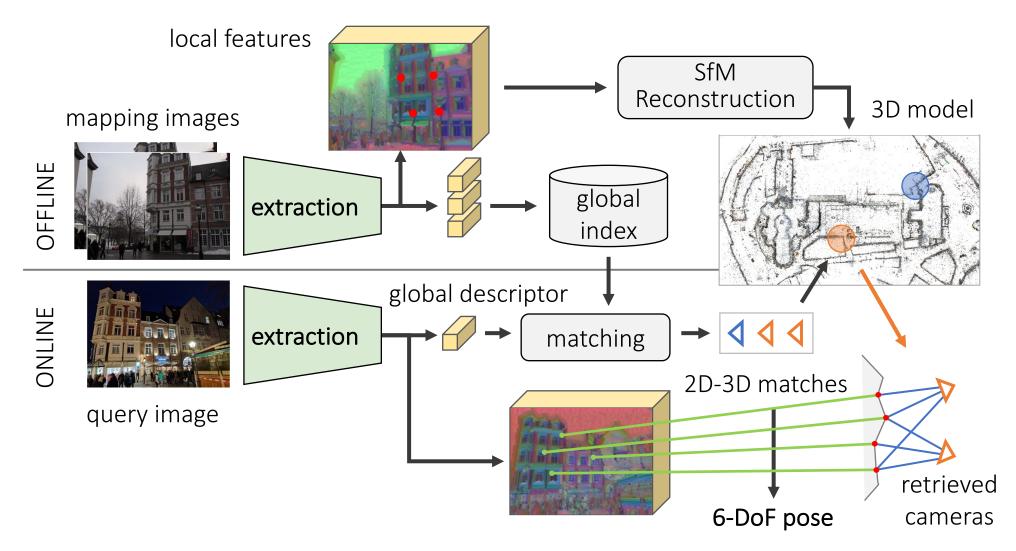
if map is large → efficient search Active Search

[Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization, Sattler et al, TPAMI 2017]

Hierarchical Localization



Hierarchical Localization



[From Coarse to Fine: Robust Hierarchical Localization at Large Scale, Sarlin et al., CVPR 2019]

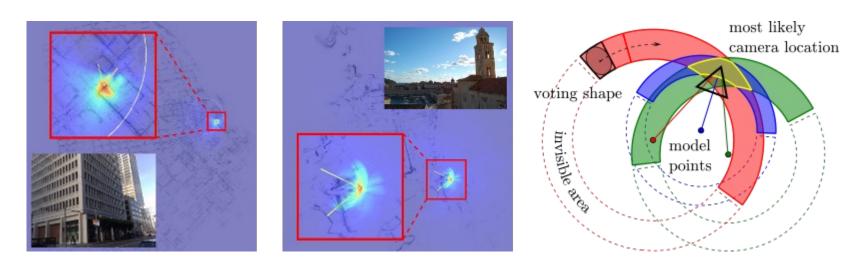
Hierarchical Localization

State of the art: many components use deep networks

- Detection: $DoG \rightarrow SuperPoint, R2D2$
- Description: SIFT \rightarrow HardNet, SOSNet, SuperPoint, R2D2
- Matching: nearest neighbor search \rightarrow SuperGlue; RANSAC
- Retrieval: BoW, VLAD \rightarrow NetVLAD, AP-GeM

Open-source toolbox: hloc github.com/cvg/Hierarchical-Localization

ECCV 2022 - LaMAR Tutorial Camera Pose Voting for Large-Scale Image-Based Localization



Zeisl, Sattler, Pollefeys ICCV'15

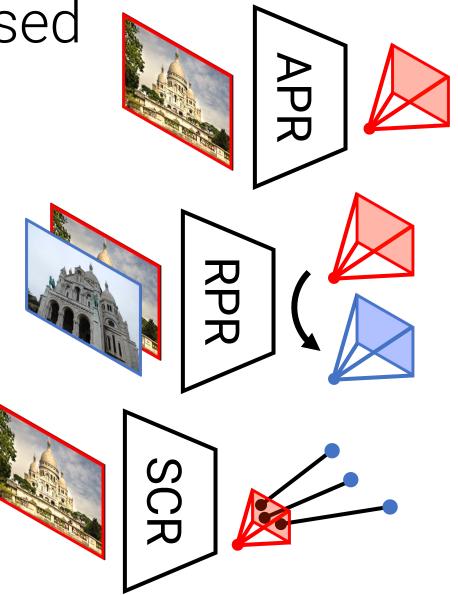
used inside Google Maps AR/Live View

Localization – learning-based

- Regress geometry with deep networks
 - Absolute Pose

V 2022 – LaMAR Tutorial

- Relative Pose
- Pixelwise 2D-3D matches
- Interesting but not practical yet
- + scene compression
- + learn data-dependent prior
- train for each new scene
- low generalization
- PR not as accurate as matching

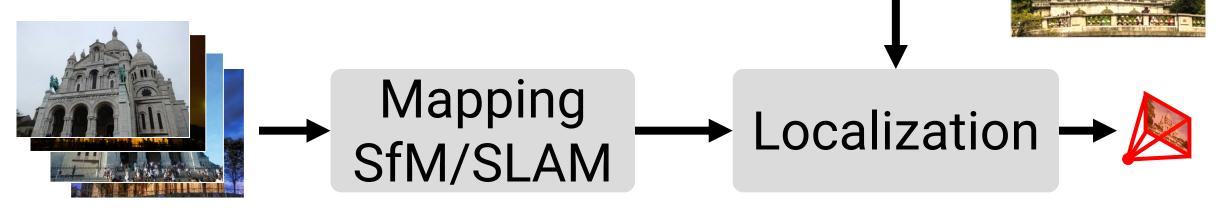


Localization & Mapping – summary

• Build a map:

CV 2022 – LaMAR Tutorial

- Recover camera poses of mapping images
- Optionally: triangulate a 3D point cloud with descriptors
- Localize each image individually:
 - feature matching + pose solver (+ image retrieval)
 - or regression via deep networks



Localization & Mapping – summary

• Assumptions:

ECCV 2022 – LaMAR Tutorial

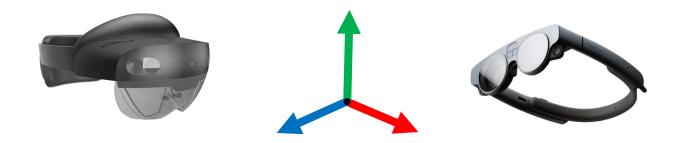
- Vision-only localization: single images
- Nice images curated for benchmarking

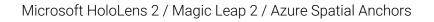
[Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions, Sattler et al., CVPR 2018]

b) Augmented Reality: constraints and opportunities

Why AR needs global localization

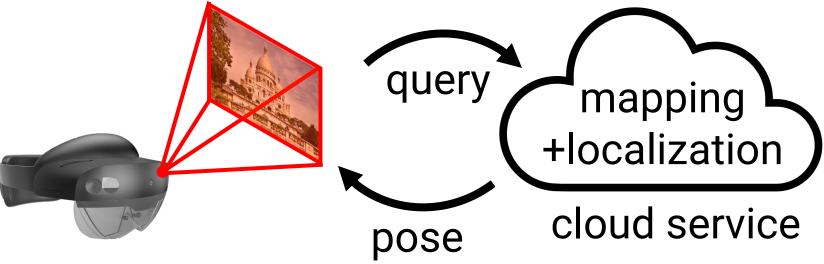
- Make virtual objects "stick" to the real word: local SLAM is enough
- Collaborative applications: *share* content between users
- Lifelong: *persist* content across time
- \rightarrow Global reference frame common to all devices

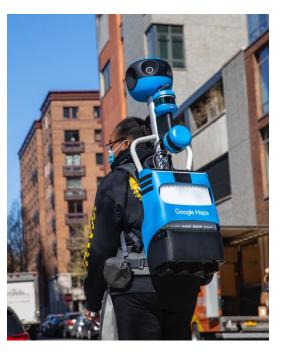




High industry interest

- Commercial localization services
 - Microsoft ASA, Google VPS, Niantic Flagship
- Early demonstration by Middelberg et al.
- Map from AR devices or custom rigs



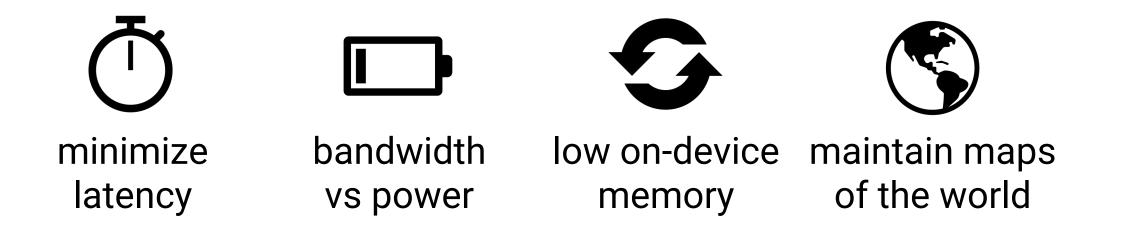


Challenges

- Localize regardless of user actions
 - Anywhere: unconstrained views, motions, scenes
 - Anytime: long after the map is built, at night, etc.
- Heterogenous devices:
 - Map and localize with different devices
 - Different cameras, sensors, etc.
- High accuracy requirement: pixel-aligned real-virtual

Challenges

• Hardware limits:



• Balance with cost of devices & data centers

Opportunities

- Multiple sensors: not just a single camera!
 - Multi-camera rig, factory calibrated
 - IMU
 - Radios: Bluetooth & WiFi
 - Depth
 - GPS
- Temporal streams: sensors are continuously in-use image sequences instead of single images
 + poses from on-device tracking

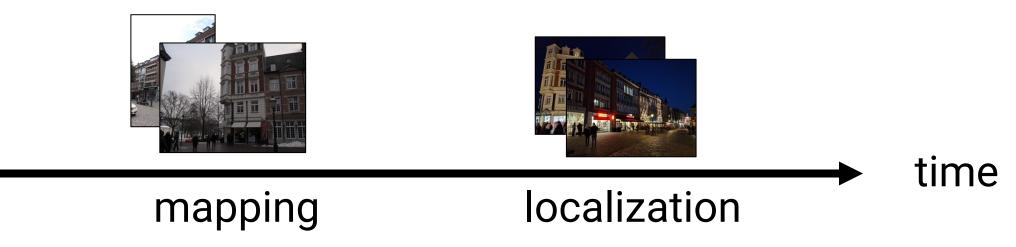
Opportunities

- Build map with crowd-sourced sensor data gathered by user
 - More scalable than specialized mapping teams
- Virtually unlimited data if large user base
 - Redundant data: select the best data for mapping

c) Existing datasets and benchmarks

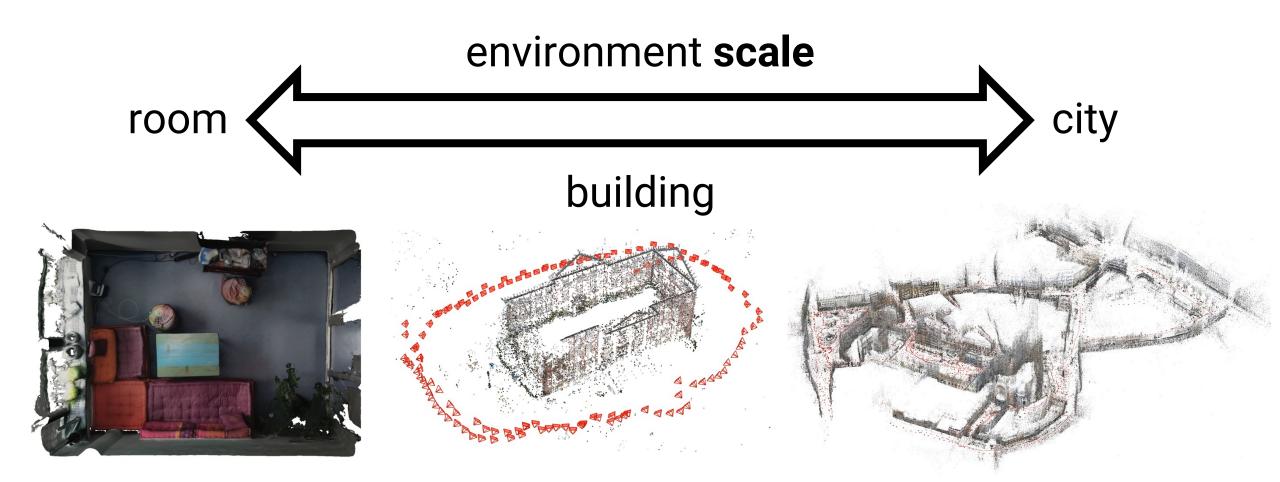
Typical evaluation setup

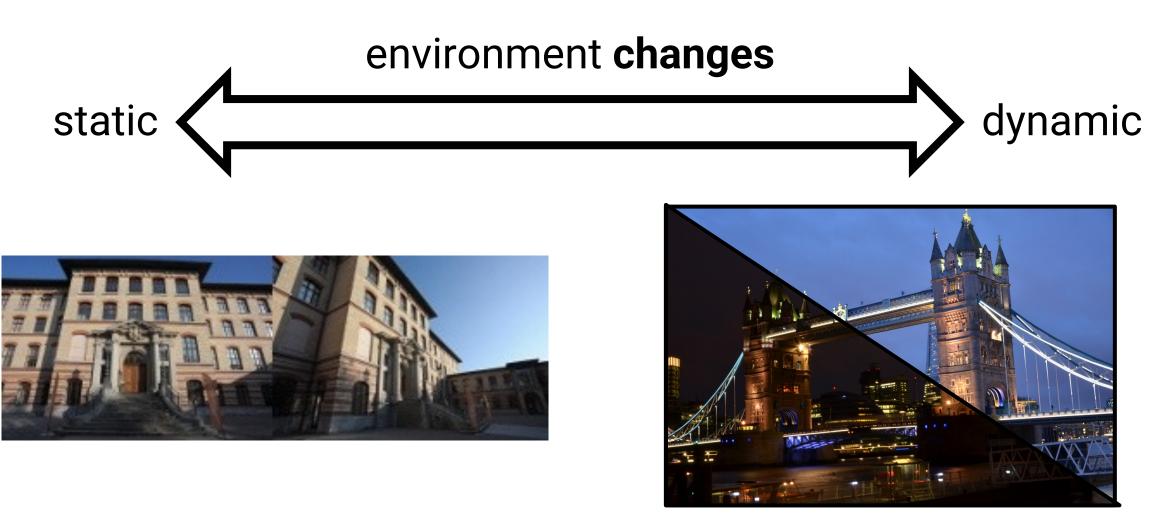
- 1. Select a set of mapping images captured at time t
- 2. Select query images captured at time t+1
- 3. Build a map from mapping images given ground truth poses
- 4. Localize query images
- 5. Evaluate the localization with ground truth poses

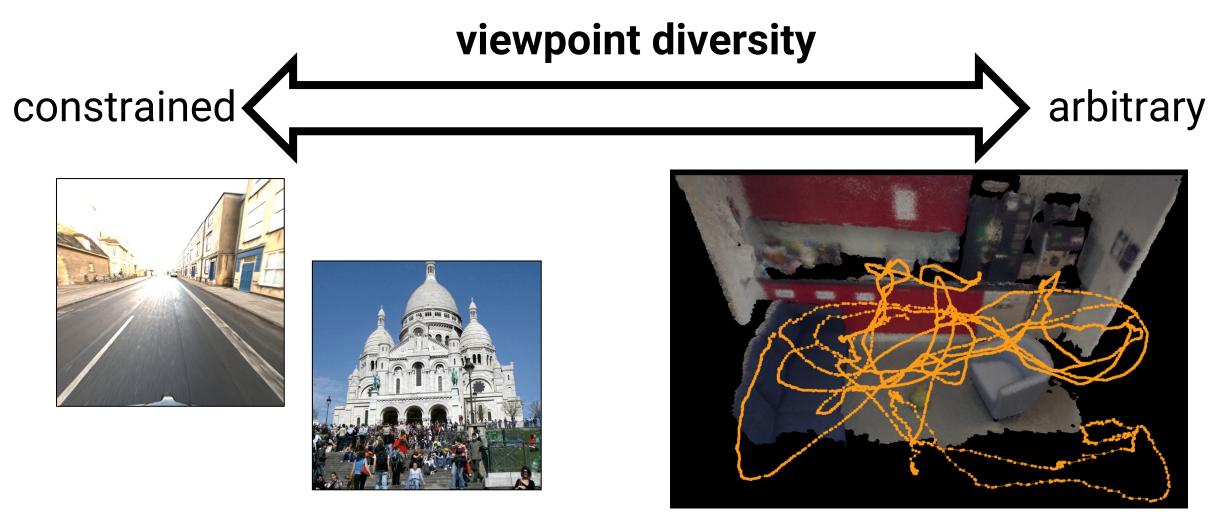


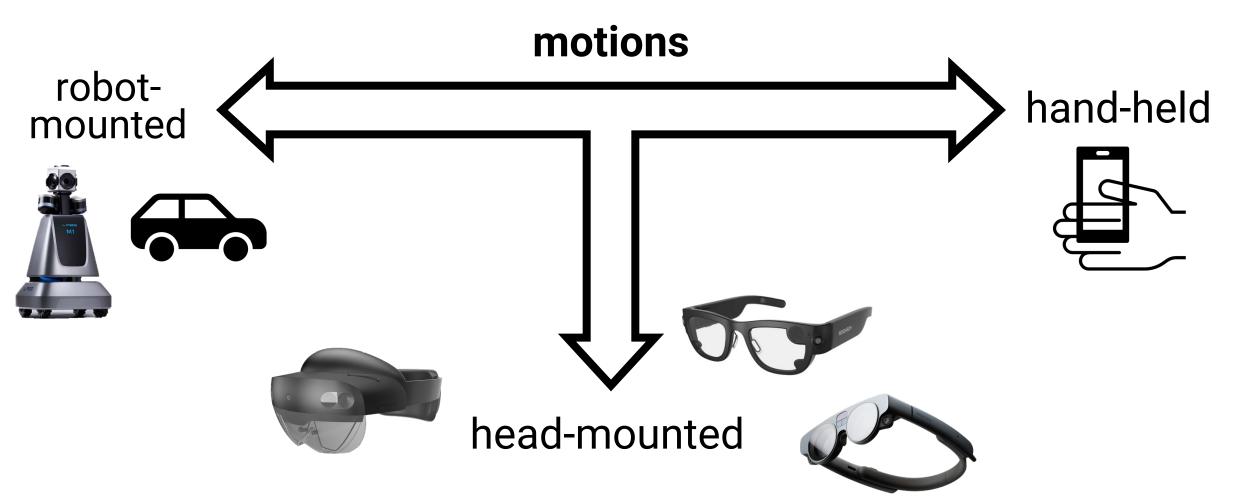
The need for benchmarks

- Incredible progress of the field in the past years
- All fueled by new benchmarks
 - Well-defined query vs mapping splits
 - Private ground truth poses
 - Public leaderboards
- visuallocalization.net, RIO-10, Image Matching Benchmark



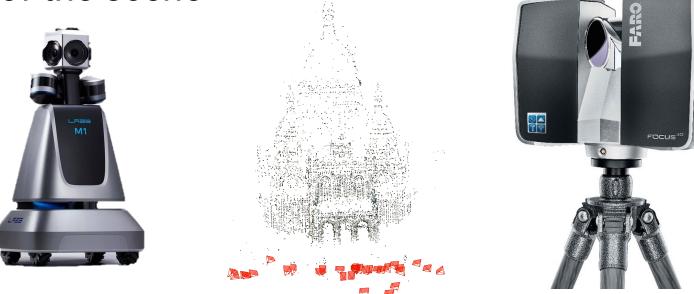






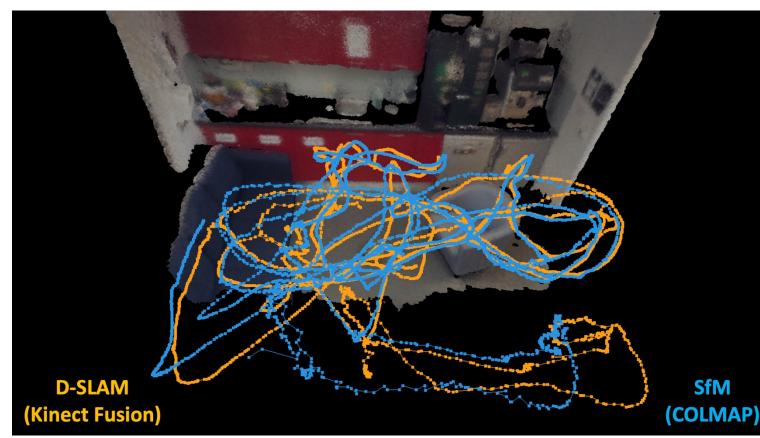
How datasets obtain their ground truth

- Manual labeling of correspondences
- Automatic SfM or SLAM
- Custom rigs with additional sensors like laser scanners
- Detailed 3D models of the scene



How datasets obtain their ground truth

- Different GT approaches = different optima
- But there is a unique underlying GT the geometry of the real world



[On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization, Brachmann et al, ICCV 2021]



Cambridge Landmarks, 7 scenes

- + pushed forward regression-based localization
- + representative of AR imagery (phones/kinect)
- mostly small-scale though
- (single) image only

[PoseNet: A Convolutional Network for Real-Time 6-DoF Camera Relocalization, Kendall et al, ICCV 2015] [Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, Shotton et al, CVPR 2013]

Aachen Day-Night, PhotoTourism, San Francisco

- + pushed forward learned features & matching (esp night)
- + larger scale \rightarrow push for scalability
- + long-term changes
- + crowd-sourced multi-device
- no guarantees in ground truth accuracy
- nice images from constrained viewpoints

[Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions, Sattler et al, CVPR 2018] [Image Matching across Wide Baselines: From Paper to Practice, Jin et al, IJCV 2020] [San Francisco Landmark Dataset for Mobile Landmark Recognition, Chen et al, 2011]

Inloc, Baidu Mall, Naver Labs, RIO-10

- + pushed forward indoor localization
- + idea of moving beyond points
- + structural changes (furniture)
- InLoc: sparse mapping images
- Naver Labs: robot motion
- Most: only images

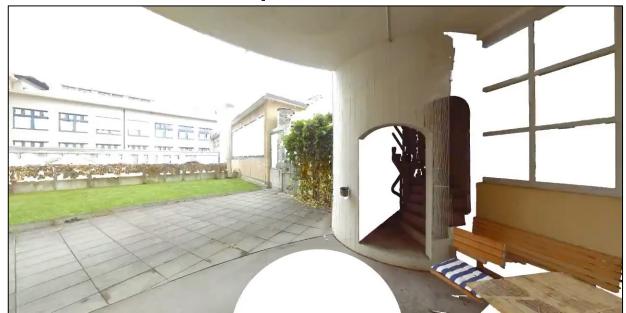
[InLoc: Indoor Visual Localization with Dense Matching and View Synthesis, Taira et al, CVPR 2018] [A dataset for benchmarking image-based localization, Sun et al, CVPR 2017] [Large-scale Localization Datasets in Crowded Indoor Spaces, Lee et al, CVPR 2021] [Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes, Wald et al, ECCV 2020]



ETH3D

- + pushed dense reconstruction / MVS forward
- + millimeter accurate ground truth
- sensors / trajectories / views not representative of AR
- very sparse views
- no scene changes

[A Multi-view Stereo Benchmark with High-Resolution Images and Multi-camera Videos, Schöps et al, CVPR 2017]



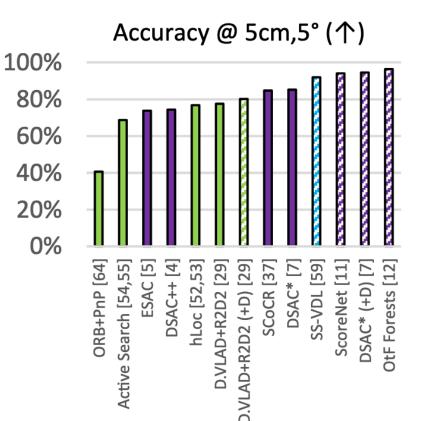
dataset	out/indoor	changes	scale	density	camera motion	imaging devices	additional sensors	ground truth	accuracy
Aachen [67,66]	$\mathbf{\nabla}\mathbf{X}$		★★☆	★★☆	still images	DSLR	×	SfM	>dm
Phototourism [34]	$\mathbf{\nabla}\mathbf{X}$	义门	₽ ΩΩΩ	***	still images	DSLR, phone	×	SfM	$\sim m$
San Francisco [14]	$\mathbf{\nabla}\mathbf{X}$	XII	***	★☆☆	still images	DSLR, phone	GNSS	SfM+GNSS	$\sim m$
Cambridge [37]	$\mathbf{\nabla}\mathbf{X}$	2, 🚑	₽₽₽₽	★★ ☆	handheld	mobile	×	SfM	>dm
7Scenes [73]	$\times $	×	₽₽₽₽	***	handheld	mobile	depth	RGB-D	\sim cm
RIO10 [84]	$\times \overline{\mathbf{V}}$	Fh.	₽₽₽₽	***	handheld	Tango tablet	depth	VIO	>dm
InLoc [77]	$\times $	Fh.	★\$ \$\$\$	₽₽₽₽	still images	panoramas, phone	lidar	manual+lidar	>dm
Baidu mall [76]	$\times \overline{\mathbf{V}}$	2	★\$ \$\$\$	★★☆	still images	DSLR, phone	lidar	manual+lidar	\sim dm
Naver Labs [40]	$\times $	۴.	★★☆	★★ ☆	robot-mounted	fisheye, phone	lidar	lidar+SfM	\sim dm
NCLT [12]	$\overline{\checkmark}$	<i>,</i>	★★☆	★★☆	robot-mounted	wide-angle	lidar, IMU, GNSS	lidar+VIO	\sim dm
ADVIO [57]	$\overline{\mathbf{V}}$	2	★★☆	₽₽₽₽	handheld	phone, Tango	IMU, depth, GNSS	manual+VIO	$\sim m$
ETH3D [71]		×	₽ΩΩΩ	★★☆	handheld	DSLR, wide-angle	lidar	manual+lidar	\sim mm

Popular benchmarks are often saturated

Aachen Day-Night v1.1

7 Scenes

Method	day	night
MegLoc	90.5 / 97.3 / 99.8	77.5 / 92.7 / 100.0
<u>OSpace</u>	91.3 / 97.2 / 99.6	81.2 / 92.1 / 100.0
HHloc	90.5 / 97.1 / 99.8	77.0 / 92.1 / 100.0
<u>4Fun</u>	91.5 / 97.1 / 99.6	78.5 / 91.6 / 99.0
PtLine	90.0 / 96.7 / 99.5	80.6 / 92.1 / 100.0
KAPTURE-R2D2-FUSION-50-PYCOLMAP	91.3 / 97.0 / 99.5	78.5 / 91.6 / 100.0
KAPTURE-Fast-R2D2-FUSION-50-PYCOLMAP	91.0 / 96.6 / 99.6	78.5 / 91.6 / 100.0
KAPTURE-R2D2-FUSION	90.9 / 96.7 / 99.5	78.5 / 91.1 / 98.4
hloc-fusion	90.5 / 96.5 / 99.6	76.4 / 90.6 / 99.0
RLOCS_v3.0	89.8 / 96.7 / 99.5	74.9 / 90.6 / 100.0
DFM	90.3 / 96.5 / 99.5	74.3 / 91.6 / 99.5
KRNet	89.7 / 96.5 / 99.4	77.5 / 90.6 / 100.0
Hierarchical Localization - SuperPoint + SuperGlue	89.8 / 96.1 / 99.4	77.0 / 90.6 / 100.0



We need a new benchmark

We need a new benchmark

