

#### lamar.ethz.ch

# LaMAR Tutorial 2. The Dataset

#### **Paul-Edouard Sarlin**











# capturing realistic but challenging AR data and conditions











#### Outline

a) Raw datab) Processed datac) Use casesd) Outlook





# a) Raw data





# Capture process - crowdsourcing

- Give AR devices to ~20 non-expert users
- Asked to explore the capture area given a map of it
  - Mimics navigation, exploration, inspection
  - No AR interactions
  - No specific instruction







#### AR devices

| device            |            | HoloLens 2                                   | iPhone 8 & iPad Pro               |  |
|-------------------|------------|----------------------------------------------|-----------------------------------|--|
|                   | motion     | head-mounted                                 | hand-held                         |  |
|                   | #          | 4x @ 30 Hz                                   | 1x @ 10 Hz                        |  |
| camera            | FOV        | 83°                                          | 64°                               |  |
|                   | resolution | VGA                                          | 1080p                             |  |
|                   | specs      | gray, GS                                     | RGB, RS, AF                       |  |
| depth             |            | ToF+IR @ 1Hz                                 | lidar @ 10 Hz                     |  |
| other             |            | IMU, gravity, 🛿 🗢                            | IMU, gravity, GNSS,😵              |  |
| poses+calibration |            | head-tracking                                | ARKit                             |  |
|                   |            | <u>async cameras</u><br>with partial trigger | <u>time-varying</u><br>intrinsics |  |











# Recording app



| Search 📲 | 09:29                              | 91%    |  |  |  |  |
|----------|------------------------------------|--------|--|--|--|--|
| Back     | 2021-06-07_09.27.21                | Select |  |  |  |  |
| Q Search |                                    |        |  |  |  |  |
| $\odot$  | Sorted by Name 🔨                   |        |  |  |  |  |
|          | accelerometer<br>09:28 - 207 KB    |        |  |  |  |  |
|          | bluetooth<br>09:28 - 13 KB         |        |  |  |  |  |
|          | <b>fused_imu</b><br>09:28 - 863 КВ |        |  |  |  |  |
|          | <b>gyroscope</b><br>09:28 - 202 KB |        |  |  |  |  |
|          | images<br>09:28 - 115.6 MB         |        |  |  |  |  |
|          | magnetometer<br>09:28 - 229 KB     |        |  |  |  |  |
|          | <b>poses</b><br>09:28 - 235 KB     |        |  |  |  |  |
|          | Recents Bro                        | wse    |  |  |  |  |





# Lidar reference

- Scan the space with NavVis devices
  - Commercial scanning rig: cameras, lidar, screen
  - Licensed processing software: SLAM + point cloud merge



• Large scenes are captured in multiple sessions of 1.5h



#### <u>NavVis VLX</u> backpack, 5 cameras, 2x long-range lasers





CCV 2022 – LaMAR Tutorial

# Lidar reference - outputs

- Registered & calibrated images
  manually triggered every 2-3m
- Point cloud
  - 2cm res, 100m range, no dynamic
  - normals, colors, sensor positions









#### Large spatial extent

#### 3 locations that are difficult to navigate



#### <u>CAB</u>

<u>HGE</u>

office building at ETH, indoor + outdoor, multi-floor

ground floor of the main ETH building, indoor + outdoor

#### LIN

old city of Zurich, outdoor-only



#### Locations - CAB







#### Locations - CAB





















M

ECCV 2022 – LaMAR Tutorial



#### Locations - HGE

















### Locations - HGE









#### Locations - HGE





TEL AVIV 2022



### Locations - LIN















### Locations - LIN









### Large temporal extent

- Data captured over 1.5-2.5 years (varies by location)
- Mobile sequences captured by burst every few months
- Reference scans every year





#### Large temporal extent



M

ECCV 2022 – LaMAR Tutorial

















#### Comparison with existing datasets

| dataset            | out/indoor                  | changes    | scale                                                          | density                          | camera motion            | imaging devices                     | additional sensors              | ground truth               | accuracy  |
|--------------------|-----------------------------|------------|----------------------------------------------------------------|----------------------------------|--------------------------|-------------------------------------|---------------------------------|----------------------------|-----------|
| Aachen [67,66]     | $\mathbf{\nabla}$           |            | ***                                                            | ★★☆                              | still images             | DSLR                                | ×                               | SfM                        | >dm       |
| Phototourism [34]  | $\mathbf{\nabla}\mathbf{X}$ | ×, 1       | ₽₽₽₽                                                           | ***                              | still images             | DSLR, phone                         | ×                               | SfM                        | $\sim m$  |
| San Francisco [14] | $\mathbf{\nabla}\mathbf{X}$ | ×, 1       | ***                                                            | <b>★</b> ☆☆                      | still images             | DSLR, phone                         | GNSS                            | SfM+GNSS                   | $\sim m$  |
| Cambridge [37]     |                             | 2, 000     | ₽₽₽₽                                                           | ★★☆                              | handheld                 | mobile                              | ×                               | SfM                        | >dm       |
| 7Scenes [73]       | XV                          | ×          | ₽₽₽₽                                                           | ***                              | handheld                 | mobile                              | depth                           | RGB-D                      | $\sim$ cm |
| RIO10 [84]         | XV                          | <b>F</b>   | ₽₽₽₽                                                           | ***                              | handheld                 | Tango tablet                        | depth                           | VIO                        | >dm       |
| InLoc [77]         | XV                          | <b>F</b>   | ★☆☆                                                            | ₽₽₽₽                             | still images             | panoramas, phone                    | lidar                           | manual+lidar               | >dm       |
| Baidu mall [76]    | $\mathbf{X}$                | <u>*</u> , | ★☆☆                                                            | ★★☆                              | still images             | DSLR, phone                         | lidar                           | manual+lidar               | $\sim$ dm |
| Naver Labs [40]    | XV                          | Å 🖡        | ★★☆                                                            | ★★☆                              | robot-mounted            | fisheye, phone                      | lidar                           | lidar+SfM                  | $\sim$ dm |
| NCLT [12]          | $\checkmark$                | <i>,</i>   | ★★☆                                                            | ★★☆                              | robot-mounted            | wide-angle                          | lidar, IMU, GNSS                | lidar+VIO                  | $\sim$ dm |
| ADVIO [57]         | $\checkmark$                | <u>*</u> , | ★★☆                                                            | ✿✿✿                              | handheld                 | phone, Tango                        | IMU, depth, GNSS                | manual+VIO                 | $\sim m$  |
| ETH3D [71]         |                             | X          | ₽₽₽₽                                                           | ★★☆                              | handheld                 | DSLR, wide-angle                    | lidar                           | manual+lidar               | $\sim$ mm |
| LaMAR (ours)       |                             | ,>,<br>₩±  | $\bigstar \bigstar \bigstar$ 3 locations 45'000 m <sup>2</sup> | <b>★★★</b><br>100 hours<br>40 km | handheld<br>head-mounted | phone, headset<br>backpack, trolley | lidar, IMU, 주 🚯 depth, infrared | lidar+SfM+VIO<br>automated | ~cm       |





# b) Processed data





#### Processing pipeline







#### Processing pipeline







#### Ground-truth visual overlap







# Ground-truthing



- Basic recipe: fuse multiple constraints:
  - Image matching 2D/3D-3D with GT laser data
  - SLAM poses: NavVis (rigid) and mobile (non-rigid)









# Ground-truthing

- Basic recipe: fuse multiple constraints:
  - Image matching 2D/3D-3D with GT laser data
  - SLAM poses: NavVis (rigid) and mobile (non-rigid)
- Assumptions:
  - Lidar-inertial poses = small, negligible drift
  - VI poses = larger drift but locally reliable







# Ground-truthing

- Basic recipe: fuse multiple constraints:
  - Image matching 2D/3D-3D with GT laser data
  - SLAM poses: NavVis (rigid) and mobile (non-rigid)
- Assumptions:
  - Lidar-inertial poses = small, negligible drift
  - VI poses = larger drift but locally reliable
- Entirely automated
  - No manual annotations
  - No fiducial markers







































































# Joint refinement

#### Bundle adjustment with relative pose constraints from SLAM







# Joint refinement

#### Bundle adjustment with relative pose constraints from SLAM



LIN: 49k images, 7.7M points, 37M obs HGE: 50k images, 5.3M points, 29M obs







### Ground-truthing - accuracy

#### Estimate covariances from the joint optimization







### Ground truth at scale



Automated ground truthing: no manual annotation!







### Ground truth at scale



Automated ground truthing: no manual annotation!







### Ground truth at scale



Automated ground truthing: no manual annotation!















# Additional data

- Per-timestamp tag: day/night, indoor/outdoor
- Floorplans for indoor: walls, doors, stairs



indoor / outdoor

[Dynamic and scalable large scale image reconstruction, Stretcha et al, CVPR 2010]







# Anonymization

- Images: faces + license plates
- Radio endpoint identifiers







# c) Use cases





# Localization & mapping

- Simulate crowd-sourced mapping: select some AR sequences
- Full flexibility in adjusting the difficulty
  - Easier maps with increased map-query overlap
- Algorithm to automatically compute the split
  - Minimize the coverage between map sequences
  - Ensure minimum coverage of all queries
- Keyframe mapping & query data at 2.5FPS/50cm & 1FPS/1m

| dataset          | CAB | HGE | LIN | Aachen v1.1 | InLoc |
|------------------|-----|-----|-----|-------------|-------|
| # mapping images | 34k | 26k | 38k | 6.7k        | 10k   |





# Localization & mapping

Randomly sample query images

V 2022 – LaMAR Tutorial

- well distributed on the map
- 1k per scene per device
- Pad with 20s for sequence evaluation
- Reject queries with high pose uncertainty







#### Localization & mapping Examples of hard queries with best map overlap









# Learning-based localization

- We did not try to train PoseNet/ESAC on LaMAR
  - Because past datasets of similar scale failed to make them work
- Good test bed to learn priors of the dynamic world
- Much larger & harder than 7Scenes and Cambridge Landmarks



[Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes, Wald et al, ECCV 2020]





# Odometry & SLAM

- Sequences of calibrated images with GT poses
- Calibrated depth from sensors / GT
- IMU @ 100Hz
  - but not calibrated on phones (IMU-camera & intrinsics)
  - could be estimated within the GT pipeline





### Dense 3D reconstruction

- Posed & calibrated RGB(-D) images
- GT depth maps from the mesh
- Evaluate MVS or RGB-D fusion
  - Across devices and time
  - Handle different cameras and conditions (day vs night)
- Pitfall: not perfect & consistent GT







# View synthesis, rendering

- High-res colored mesh, posed & calibrated images
- Building-scale indoor NeRF
- Pitfall:
  - Mesh is not perfect and has artefacts
  - but could easily be improved
  - Lidar point cloud is much cleaner









# d) Outlook





#### Public release

- Evaluation data released this week
  - Mapping + query sets
  - Keyframed
- Full data will be released later: lidar, full-FPS data, floorplans, etc.
- License
  - CC-BY-SA for all raw data  $\rightarrow$  allow commercial use
  - But: GT pipeline includes SuperPoint+SuperGlue





### Limitations

- iOS does not expose full radios:
  - no WiFi, anonymized BT, no BT beacon
- GTing
  - NavVis is assumed perfect but is not always
    - Blackbox software, no multi-session optimization
  - no tight IMU integration, no tracking covariances
  - uncertainty is likely underestimated: camera-only covariances
  - But have plans to improve it
- Mesh is not perfect





# Community contributions

- Your company develops AR devices?
- Consider exposing raw sensor data via a "research mode"







# Q&A

#### Next: benchmarking localization & mapping